

# The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce (Autonomous)

Mithaghar Road, Mulund East, Mumbai-400081, India

College with Potential for Excellence

# Syllabus for B. Sc. Third Year Program in

**BIOTECHNOLOGY** Syllabus as per Choice Based Credit System (NEP-2020)

(June 2025 Onwards)

# **Board of Studies in Biotechnology**

# V. G. Vaze College of Arts, Science and Commerce (Autonomous)

Submitted by

Department of Biotechnology

Vinayak Ganesh Vaze College of Arts, Science and Commerce (Autonomous) Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India. E-mail: <u>vazecollege@gmail.com</u> Website :www.vazecollege.net \_\_\_\_\_

# Syllabus as per Choice Based Credit System (NEP 2020)

# **Syllabus for Approval**

Subject: **BIOTECHNOLOGY** 

| Sr. No. | Program                                 | Particulars                                                                                                                                                                                            |
|---------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Title of Programme                      | Third Year B.Sc. Biotechnology:<br>Semester V and VI                                                                                                                                                   |
| 2       | Eligibility for Admission               | The Second Year B.Sc. examination of this<br>University with Biotechnology as a Major & Minor<br>subject or any other university recognized as<br>equivalent thereto subject to availability of seats. |
| 3       | Passing marks                           | Minimum D Grade or equivalent minimum marks for passing at the Graduation level.                                                                                                                       |
| 4       | Ordinances/Regulations<br>(if any)      |                                                                                                                                                                                                        |
| 5       | No. of Years/Semesters                  | One year/Two semester                                                                                                                                                                                  |
| 6       | Level                                   | U.G. Part-III: Level- 5.5                                                                                                                                                                              |
| 7       | Pattern                                 | Semester                                                                                                                                                                                               |
| 8       | Status                                  | Revised                                                                                                                                                                                                |
| 9       | To be implemented from<br>Academic year | 2025-2026                                                                                                                                                                                              |

#### Core Course & Credits NSQF Course & Credits Semester MAJOR VSC/SEC No. of No. of Lectures Lectures Sem - V **Mandatory**\*Credits 10 (5 x 2) VSC Credits 2 Course 1 Cr. 2: Theory 60+40 Course 1 Cr. 2: Theory 60+40 2L 2L Course 2 Cr. 2: Theory 60+40 2L Course 3 Cr. 2: Theory 60+40 2LCourse 4 Cr. 2: Practical 100 4L Course 5 Cr. 2: Practical 100 4L **Electives (select anyone)** OJT/FP/CEP/CC/RP **Credits 4 (2+2)** Course 1 Cr. 2: Theory 60+40 **FP** Credits 2 2L Course 1 Cr. 2: Practical 100 Course 2 Cr. 2: Practical 100 4L 4L Course 3 Cr. 2: Theory 60+40 2L Course 4 Cr. 2: Practical 100 4L MINOR **Credits 4 (2+2)** Course 1 Cr. 2: Theory 60+40 2L Course 2 Cr. 2. Practical 100 4L MAJOR Sem - VI Mandatory\*Credits 10 (5 x 2) Course 1 Cr. 2: Theory 60+40 2L Course 2 Cr. 2: Theory 60+40 2L Course 3 Cr. 2: Theory 60+40 2LCourse 4 Cr. 2: Practical 100 4L Course 5 Cr. 2: Practical 100 4L **Electives (select anyone)** OJT/FP/CEP/CC/RP **Credits 4 (2+2)** Course 1 Cr. 2: Theory 60+40 2L **OJT Credits 4** Course 2 Cr. 2: Practical 100 Course 1 Cr. 2: Practical 100 4L 8L Course 3 Cr. 2: Theory 60+40 2L Course 4 Cr. 2: Practical 100 4L MINOR **Credits 4** Course 1 Cr. 2: Theory 60+40 2L Course 2 Cr. 2: Practical 100 4L Total Cumulative credits = 20 + 08 + 06 + 04 + 06 = 44 Credits

# Third Year B. Sc. Program in Biotechnology (Level 5.5)

Exit option: Award of UG Degree in Major with 132 credits OR continue with Major

# **Program Specific Outcomes Biotechnology**

**PSO 1 Apply Biotechnological Principles:** Graduates will be able to apply fundamental principles of biotechnology, including molecular biology, genetics, and biochemistry, to solve problems and develop innovative solutions.

**PSO 2 Design and Conduct Experiments:** Graduates will be able to design, conduct, and analyze experiments in biotechnology, including molecular biology, cell culture, and bioanalytical techniques.

**PSO 3 Communicate Biotechnological Concepts**: Graduates will be able to effectively communicate biotechnological concepts, principles, and research findings to both technical and non-technical audiences through written, oral, and visual presentations.

**PSO 4 Apply Biotechnological Tools and Techniques:** Graduates will be able to apply biotechnological tools and techniques, including genetic engineering, gene editing, and bioinformatics, to solve real-world problems and develop innovative solutions.

**PSO 5 Integrate Biotechnology with Other Disciplines**: Graduates will be able to integrate biotechnology with other disciplines, including chemistry, physics, mathematics, and engineering, to develop innovative solutions to complex problems.

**PSO 6 Demonstrate Professional and Ethical Responsibility**: Graduates will be able to demonstrate professional and ethical responsibility in the practice of biotechnology, including respect for intellectual property, adherence to regulatory guidelines, and consideration of social and environmental implications.

# **Program Outcomes Biotechnology**

## 1. Knowledge and Understanding

- Graduates will have a strong foundation in the principles of biotechnology, including molecular biology, genetics, biochemistry, and microbiology.

- Graduates will understand the applications of biotechnology in various fields, including healthcare,

agriculture, and industry.

# 2. Practical Skills

- Graduates will be able to design and conduct experiments, collect and analyze data, and draw meaningful conclusions.

- Graduates will be proficient in various laboratory techniques, including DNA manipulation, protein analysis, and cell culture.

# 3. Critical Thinking and Problem-Solving

- Graduates will be able to critically evaluate scientific information, identify problems, and develop creative solutions.

- Graduates will be able to analyze complex biological systems and processes, and develop innovative approaches to address biotechnology-related challenges.

# 4. Communication and Collaboration

- Graduates will be able to effectively communicate scientific information to various audiences, including peers, professionals, and the general public.

- Graduates will be able to work collaboratively in teams, including interdisciplinary teams, to achieve common goals.

# 5. Professionalism and Ethics

- Graduates will understand the ethical implications of biotechnology and its applications.

- Graduates will be able to apply ethical principles and professional standards in their work.

# **Career Outcomes Biotechnology**

## 1. Research and Development

- Graduates can pursue careers in research and development in biotechnology industries, academic institutions, or government laboratories.

## 2. Industry and Manufacturing

- Graduates can work in biotechnology industries, including pharmaceuticals, agriculture, and food processing.

## 3. Healthcare and Diagnostics

- Graduates can pursue careers in healthcare, including diagnostics, therapeutics, and personalized medicine.

#### 4. Regulatory Affairs and Policy

- Graduates can work in regulatory affairs, policy-making, or advocacy related to biotechnology.

## 5. Further Education and Academia

- Graduates can pursue higher education, including master's or doctoral degrees, or careers in academia.

# The Detailed Semester and Course Wise Syllabus as follows:

The total minimum credits required for completing the B.Sc. in Biotechnology is 132

| SEMESTER - V | T                                                        |    |   |    |     |
|--------------|----------------------------------------------------------|----|---|----|-----|
| Code         | Course of Study - Major                                  | L  | Т | Р  | Cr. |
| VBCB300      | Course 1 Cr. 2: CELL BIOLOGY                             | 2  | - | -  | 2   |
| VBMB301      | Course 2 Cr. 2: MOLECULAR BIOLOGY                        | 2  | - | -  | 2   |
| VBSW302      | Course 3 Cr. 2: SCIENTIFIC WRITING & PRESENTATION SKILLS | 2  | - | -  | 2   |
| VBPR303      | Course 4 Cr. 2: CELL BIOLOGY PRACTICALS                  | -  | - | 4  | 2   |
| VBPR304      | Course 5 Cr. 2: MOLECULAR BIOLOGY PRACTICALS             | -  | - | 4  | 2   |
|              | Electives                                                |    |   |    |     |
|              | Course 1 Cr. 2: MARINE BIOTECHNOLOGY                     | 2  | - | -  | 2   |
|              | Course 2 Cr. 2: MARINE BIOTECHNOLOGY PRACTICALS          | -  | - | 4  | 2   |
| VBB305       | Course 3 Cr. 2: BIOSAFETY                                | 2  | - | -  | 2   |
| VBPR306      | Course 4 Cr. 2: BIOSAFETY PRACTICALS                     | -  | - | 4  | 2   |
|              | MINOR Credits 4                                          |    |   |    |     |
| VBMM309      | Course 1 Cr. 2: MEDICAL MICROBIOLOGY                     | 2  | - | -  | 2   |
| VBPR310      | Course 2 Cr. 2: MEDICAL MICROBIOLOGY PRACTICALS          | -  | - | 4  | 2   |
|              | VSC-/SEC-Credits 2                                       |    |   |    |     |
| VBFB311      | Course 1 Cr. 2: FOOD BIOTECHNOLOGY                       | 2  | - | -  | 2   |
|              | FP Credits 2                                             |    |   |    |     |
| VBFP312      | Course 1 Cr. 2:                                          | -  | - | 4  | 2   |
| Total        |                                                          | 18 | - | 22 | 22  |

**Note:** Students are allowed to select one elective out of the two given in curriculum.

| SEMESTER - VI |                                                                    |    |   |    |    |
|---------------|--------------------------------------------------------------------|----|---|----|----|
| Code          | Course of Study - Major                                            | L  | Т | Р  | С  |
| VBB350        | Course 1 Cr. 2: BIOCHEMISTRY                                       | 2  | - | -  | 2  |
| VBIM351       | Course 2 Cr. 2: INDUSTRIAL MICROBIOLOGY                            | 2  | - | -  | 2  |
| VBEB352       | Course 3 Cr. 2: ENVIRONMENTAL BIOTECHNOLOGY                        | 2  | - | -  | 2  |
| VBPR353       | Course 4 Cr. 2: BIOCHEMISTRY PRACTICALS                            | -  | - | 4  | 2  |
| VBPR354       | Course 5 Cr. 2: INDUSTRIAL MICROBIOLOGY PRACTICALS                 | -  | - | 4  | 2  |
|               | Electives                                                          |    |   |    |    |
| VBPB355       | Course 1 Cr. 2: PHARMACEUTICAL BIOTECHNOLOGY                       | 2  | - | -  | 2  |
| VBPR356       | /BPR356 Course 2 Cr. 2: PHARMACEUTICAL BIOTECHNOLOGY<br>PRACTICALS |    |   |    | 2  |
|               | Course 3 Cr. 2: AGRICULTURAL BIOTECHNOLOGY                         | 2  | - | -  | 2  |
|               | Course 4 Cr. 2: AGRICULTURAL BIOTECHNOLOGY PRACTICALS              | -  | - | 4  | 2  |
|               | MINOR Credits 4                                                    |    |   |    |    |
| VBPN359       | Course 1 Cr. 2: PHARMACOLOGY & NEUROCHEMISTRY                      | 2  | - | -  | 2  |
| VBPR360       | Course 2 Cr. 2: PHARMACOLOGY & NEUROCHEMISTRY<br>PRACTICALS        | -  | - | 4  | 2  |
|               | OJT Credits 4                                                      |    |   |    |    |
| VBPR361       | Course 1 Cr. 2:                                                    | -  | - | 8  | 4  |
| Total         | ·                                                                  | 18 | - | 22 | 22 |

**Note:** Students are allowed to select one elective out of the two given in curriculum.

# Syllabus for

# T.Y. B. Sc. Biotechnology Semester V and VI

**Choice Based Credit System (NEP 2020)** 

(To be implemented from the academic year 2025-2026)

| Program: Biotech             | nology                           |        | Semester: V                            |                           |  |
|------------------------------|----------------------------------|--------|----------------------------------------|---------------------------|--|
| Course: Cell Biology (MAJOR) |                                  |        | Course Code:                           |                           |  |
| Teaching Scheme              |                                  |        | Evaluation Scheme                      |                           |  |
| Lecture<br>(Hours per week)  | Practical<br>(Hours per<br>week) | Credit | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |  |
| 2                            | -                                | 2      | 40 M                                   | 60 M                      |  |

The objective of this course is to have a firm foundation in the fundamentals of Cell Biology.

Explain the principles and role of receptors of cell signaling

Describe different stages of development.

Understand embryogenesis and morphogenesis.

#### **Course Outcomes:**

Understand cell cycle and its regulation.

Understand molecular genetics of cancer.

Describe signaling pathways involved in cell growth and differentiation.

Understand the scope of developmental biology.

| Unit | Topics                | No of Hours |
|------|-----------------------|-------------|
| 1    | Cell Cycle            | 10          |
| 2    | Cell Signaling        | 10          |
| 3    | Developmental biology | 10          |
|      | Total                 | 30          |

| Unit           | Торіс                                                                         | Hours/  |
|----------------|-------------------------------------------------------------------------------|---------|
|                |                                                                               | Credits |
| Ι              | Cell cycle Introduction: Prokaryotic and Eukaryotic                           | 10      |
| Cell Cycle     | The Early Embryonic Cell Cycle and the Role of MPF                            |         |
|                | Yeasts and the Molecular Genetics of Cell-Cycle Control                       |         |
|                | Apoptosis, Cell-Division Controls in Multicellular Animals                    |         |
|                | Cancer: Introduction, The Molecular Genetics of Cancer                        |         |
| II             | Cell signaling and signal transduction: Introduction General Principles of    | 10      |
| Cell Signaling | Cell Signaling                                                                |         |
|                | Signaling via G Protein-linked Cell-Surface Receptors                         |         |
|                | Signaling via Enzyme-linked Cell-Surface Receptors                            |         |
|                | Target-Cell Adaptation, The Logic of Intracellular                            |         |
|                |                                                                               | 10      |
|                | Model organisms in Developmental biology                                      | 10      |
| Developmental  | Stages of development- zygote, blastula, gastrula, neurula cell fate &        |         |
| Biology        | commitment – potency- concept of embryonic stem cells, differential gene      |         |
|                | expression, terminal differentiation, lineages of three germ layers, fate map |         |
|                | Mechanisms of differentiation- cytoplasmic determinants, embryonic            |         |
|                | induction, concept of morphogen, mosaic and regulative development            |         |
|                | Pattern formation axis specification, positional identification (regional     |         |
|                | specification), Morphogenetic movements.                                      |         |

- Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., K Reiger M., Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freeman and Co., USA
- Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA
- 3. Cell Biology, 6<sup>th</sup> edition, (2010) Gerald Karp. John Wiley & Sons., USA
- The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA
- 5. Developmental Biology; Scott Gilbert; 9<sup>th</sup> Edition

   Program: Biotechnology

   Semester: V

| Course: Cell Biol           | ogy Practical (Maj               | Cou    | rse Code:                              |                           |
|-----------------------------|----------------------------------|--------|----------------------------------------|---------------------------|
| Teac                        | ching Scheme                     | Ev     | aluation Scheme                        |                           |
| Lecture<br>(Hours per week) | Practical<br>(Hours per<br>week) | Credit | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |
| _                           | 4                                | 2      | _                                      | 100                       |

1. Chick embryo candling and inoculation methods.

- 2. Study of developmental stages of chick embryo.
- 3. Animal tissue culture: Tissue dissociation by trypsinization and estimate viability
- 4. Plant tissue culture: Callus production, Protoplast preparation and estimate viability by activity staining.
- 5. Separation of mononuclear cells using density gradient centrifugation and determination of its viable count.
- 6. Determination of cell viability in pollen grains / yeast using dye exclusion test.
- 7. Study of osmotic fragility of RBCs.

| Program: Biotech            | nology                           |        | Semester: V<br>Course Code:            |                           |  |  |
|-----------------------------|----------------------------------|--------|----------------------------------------|---------------------------|--|--|
| Course: Molecula            | ar Biology (MAJO                 | R)     |                                        |                           |  |  |
| Teaching Scheme             |                                  |        | Evaluation Scheme                      |                           |  |  |
| Lecture<br>(Hours per week) | Practical<br>(Hours per<br>week) | Credit | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |  |  |
| 2                           | -                                | 2      | 40 M                                   | 60 M                      |  |  |

Define cloning vectors and their purpose.

Explain different types of cloning vectors.

Outline the techniques used for cloning.

Describe basic principles of DNA sequencing.

Explain the concept of gene editing and its importance in molecular biology and genetics.

# **Course Outcomes:**

Understand types of cloning vectors.

Explain the advantages and disadvantages of plasmid vectors in molecular cloning.

Understand different cloning strategies.

Understand the principles of DNA sequencing.

Explain different methods of gene editing and their applications.

| Unit | Topics                       | No of Hours |
|------|------------------------------|-------------|
| 1    | Cloning Vectors              | 10          |
| 2    | cDNA and Genomic DNA Cloning | 10          |
| 3    | Gene sequencing and Editing  | 10          |
|      | Total                        | 30          |

| Unit        | Торіс                                                                   |         |  |  |
|-------------|-------------------------------------------------------------------------|---------|--|--|
|             |                                                                         | Credits |  |  |
| Ι           | Enzymes in gene cloning.                                                | 10      |  |  |
| Tools in    | Cloning vectors: Plasmids (pBR322, pUC series), Cosmids,                |         |  |  |
| Molecular   | phagemids M13, shuttle vectors, YAC vectors, expression vectors         |         |  |  |
| Biology     | pET, Agrobacterium based vectors, Plant and Animal transgenesis         |         |  |  |
|             | vectors and their methodology.                                          |         |  |  |
|             |                                                                         |         |  |  |
| II          | Gene cloning: Isolation and purification of DNA; Isolation of gene      | 10      |  |  |
| Cloning     | of interest: Restriction digestion, electrophoresis, blotting, cutting, |         |  |  |
| strategies  | and joining DNA, methods of gene transfer in prokaryotes and            |         |  |  |
|             | eukaryotes Recombinant selection and screening methods.                 |         |  |  |
|             | Expression of cloned DNA molecules and maximization                     |         |  |  |
|             | of expression                                                           |         |  |  |
|             | Cloning strategies: genomic DNA libraries, cDNA libraries,              |         |  |  |
|             | chromosome walking and jumping                                          |         |  |  |
| III         | Maxam Gilbert's method, Sanger's dideoxy method,                        | 10      |  |  |
| Gene        | Automated DNA sequencing, Pyrosequencing.                               |         |  |  |
| sequencing  | Human genome mapping and its implications in health and                 |         |  |  |
| and Editing | disease.                                                                |         |  |  |
|             | RNAi, ZNF (Zinc finger nucleases), TALENS (Transcription                |         |  |  |
|             | Activator Like Effector                                                 |         |  |  |
|             | Nucleases), CRISPER/Cas system (Clustered Regularly Interspersed        |         |  |  |
|             | Repeats)                                                                |         |  |  |

- 1. iGenetics A Molecular Approach 3<sup>rd</sup> Edition Peter J. Russell.
- Molecular Biotechnology-Principles and Applications of Recombinant DNA Technology 3<sup>rd</sup> Edition Glick B.R., Pasternak J.J., Patten C.L.
- 3. Principles of Gene Manipulation 7<sup>th</sup> Edition Primrose S.B., Twyman R.M.
- 4. Biotechnology 3<sup>rd</sup> Edition S.S. Purohit.
- 5. Gene Cloning and DNA Analysis 6<sup>th</sup> Edition T.A. Brown.
- 6. Genomics Cantor C.R., and Smith C.L. John Wiley & Sons. (1999)

| Program: Biotech            | nology                           |            | Sem                                    | ester: V                  |
|-----------------------------|----------------------------------|------------|----------------------------------------|---------------------------|
| Course: Molecula            | ar Biology Practica              | al (Major) | Cou                                    | rse Code:                 |
| Teaching Scheme             |                                  |            | Ev                                     | aluation Scheme           |
| Lecture<br>(Hours per week) | Practical<br>(Hours per<br>week) | Credit     | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |
| -                           | 4                                | 2          | -                                      | 100                       |

1. Plasmid DNA extraction.

2. Restriction enzyme digestion and ligation.

3. Transformation in Escherichia coli.

4. Blue-white selection strategy for recombinants.

5. Bacterial gene expression.

Reading of Sanger's dideoxy DNA sequencing autoradiogram.
 Polymerase chain reaction.

| Program: Biotech                     | nology                           | Semester: V  |                                          |      |  |
|--------------------------------------|----------------------------------|--------------|------------------------------------------|------|--|
| Course: Scientific<br>Skills (MAJOR) | e Writing and Pres               | Course Code: |                                          |      |  |
| Teaching Scheme                      |                                  |              | Evaluation Scheme                        |      |  |
| Lecture<br>(Hours per week)          | Practical<br>(Hours per<br>week) | Credit       | t Continuous<br>Assessment<br>(Internal) |      |  |
| 2                                    | -                                | 2            | 40 M                                     | 60 M |  |

Master the principles and ethics of scientific writing, including structuring and clarity.

Develop and refine research questions, literature reviews, and effective abstracts.

Enhance presentation skills, utilizing visual aids and effective communication techniques.

Navigate the publication process, from manuscript writing to responding to reviewer feedback.

## **Course Outcomes:**

Explain and understand key features of scientific writing including clarity, conciseness and accuracy. Write clear and concise scientific abstracts that effectively summarize a research paper. Write scientific papers that effectively communicate research findings. Critically evaluate scientific papers.

| Unit | Topics                                                             | No of Hours |
|------|--------------------------------------------------------------------|-------------|
| 1    | Scientific writing- Introduction                                   | 10          |
| 2    | Scientific writing- Research Design, Data Collection and Reporting | 10          |
| 3    | Scientific writing-Publication.                                    | 10          |
|      | Total                                                              | 30          |

| Unit           | Торіс                                                              | Hours/Credits |
|----------------|--------------------------------------------------------------------|---------------|
|                |                                                                    |               |
| Ι              | Purpose, audience, and style of scientific writing; primary        | 10            |
| Scientific     | vs. secondary sources; peer review process., Structuring           |               |
| writing-       | documents: abstracts, introductions, methods, results,             |               |
| Overview       | discussions, conclusions., Effective communication                 |               |
|                | principles: clarity, conciseness, coherence., Ethical              |               |
|                | considerations: plagiarism, authorship, conflicts of interest.     |               |
|                |                                                                    |               |
| II             | Developing research questions and hypotheses., Literature          | 10            |
| Scientific     | review: searching databases, evaluating sources, synthesizing      |               |
| writing-       | information., Crafting titles and abstracts; writing methods       |               |
| Research       | sections., Presenting results: tables, figures, statistical        |               |
| Design, Data   | analysis.                                                          |               |
| Collection and |                                                                    |               |
| Reporting      |                                                                    |               |
|                |                                                                    |               |
| III            | Publication process: journal selection, manuscript submission,     | 10            |
| Scientific     | peer review., Manuscript writing: structure, titles, abstracts,    |               |
| writing-       | formatting., Responding to reviewer comments, revising             |               |
| Publication.   | manuscripts., Ethical publishing: authorship, conflicts of         |               |
|                | interest, data integrity. Scientific posters and presentations for |               |
|                | conferences., Professional online presence: academic profiles,     |               |
|                | social media, networking., Career development in science           |               |
|                | communication: writing, editing, journalism.                       |               |
|                |                                                                    |               |

#### REFERENCES

- 1. Day, R. A., & Gastel, B. How to Write and Publish a Scientific Paper (8th Edition). Cambridge University Press, 2016.
- 2. Alley, M. The Craft of Scientific Writing (4th Edition). Springer, 2013.
- 3. Katz, M. J. From Research to Manuscript: A Guide to Scientific Writing (2nd Edition). Springer, 2009.
- 4. Matthews, J. R., & Matthews, R. W. Successful Scientific Writing: A Step-by Step Guide for the Biological and Medical Sciences (4th Edition). Cambridge University Press, 2014.

| Program: Biotech                                                                        | nology           |      | Semester: V                            |                           |  |
|-----------------------------------------------------------------------------------------|------------------|------|----------------------------------------|---------------------------|--|
| Course: Medical                                                                         | Microbiology (MI | NOR) | Course Code:                           |                           |  |
| Teac                                                                                    | ching Scheme     | Ev   | valuation Scheme                       |                           |  |
| Lecture<br>(Hours per week)<br>(Hours per week)<br>(Hours per week)<br>(Hours per week) |                  |      | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |  |
| 2                                                                                       | -                | 2    | 40 M                                   | 60 M                      |  |

Understand host-pathogen interactions.

Describe different types of bacterial pathogens.

To provide the conceptual basis for understanding viruses and mechanisms of their pathogenicity.

Explain the mode of action of antimicrobial agents employed to prevent diseases including infection.

## **Course Outcomes:**

Analyze laboratory diagnosis of bacterial infections.

Use laboratory techniques to diagnose and identify bacterial pathogens.

Understand appropriate use of antimicrobial agents and common mechanisms of

antimicrobial action and resistance.

| Unit | Topics                              | No of Hours |
|------|-------------------------------------|-------------|
| 1    | Bacteriology                        | 10          |
| 2    | Virology                            | 10          |
| 3    | Principles of antimicrobial therapy | 10          |
|      | Total                               | 30          |

| Unit          | Торіс                                                                     |         |  |  |
|---------------|---------------------------------------------------------------------------|---------|--|--|
|               |                                                                           | Credits |  |  |
|               | Host-Parasite relationship,                                               |         |  |  |
| Ι             | Patterns of Infection;                                                    | 10      |  |  |
| Bacteriology  | Types of Infections; Signs and Symptoms;                                  |         |  |  |
|               | Epidemiology and Epidemiological Markers.                                 |         |  |  |
|               | Bacteriological Infactions of the Skin Despiratory tract Castrointestinal |         |  |  |
|               | tract Urogenital tract Nosocomial Infections                              |         |  |  |
|               |                                                                           |         |  |  |
| П             | Virus: introduction morphology and growth                                 | 10      |  |  |
| Virology      | Viral replication Viral diversity                                         | 10      |  |  |
|               | Overview of bacterial viruses                                             |         |  |  |
|               | Overview of plant viruses                                                 |         |  |  |
|               | Overview of animal viruses                                                |         |  |  |
|               | Subviral entities                                                         |         |  |  |
|               |                                                                           |         |  |  |
| Ш             | Antibacterial agents                                                      | 10      |  |  |
| Principles of | Antifungal agents                                                         | 10      |  |  |
| antimicrobial | Antiparasitic agents                                                      |         |  |  |
| therapy       | Antiviral agents                                                          |         |  |  |
|               | Interactions between microbes and drugs                                   |         |  |  |
|               | Interactions between drugs and hosts                                      |         |  |  |
|               |                                                                           |         |  |  |
|               |                                                                           |         |  |  |

- 1. Mim's Medical Microbiology 5<sup>th</sup> edition
- 2. Microbiology by Prescott Harley and Klein 5<sup>th</sup> edition Mc Graw Hill
- Medical Microbiology Jawetz, E, Brooks, G.E, Melnick, J.L., Butel, J.S Adelberg E. A 18<sup>th</sup> edition
- 4. Medical Microbiology by Patrick Murray 5<sup>th</sup> edition
- 5. Foundations In Microbiology by Talaro and Talaro Third edition W.C Brown
- 6. Understanding Viruses by Teri Shors

| Program: Biotech                                                 | nology                                                                                                                                                                        |                                                                                       | Semester: V               |                 |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------|-----------------|
| Course: Medical Microbiology Practical (Mi                       |                                                                                                                                                                               |                                                                                       | nor) Cou                  | irse Code:      |
| Teac                                                             | ching Scheme                                                                                                                                                                  |                                                                                       | Ev                        | aluation Scheme |
| Lecture<br>(Hours per week) Practical<br>(Hours per week) Credit |                                                                                                                                                                               | Continuous<br>Assessment<br>(Internal)                                                | Semester End Examinations |                 |
| _                                                                | 4                                                                                                                                                                             | 2                                                                                     | -                         | 100             |
| 1. S<br>2. S<br>3. B<br>4. M<br>5. A<br>6. A<br>7. A<br>8. S     | tudy of <i>Pseudomor</i><br>tudy of <i>Klebsiella</i><br>acteriophage titrati<br>AIC and MLC of an<br>antibiotic sensitivity<br>antibiotic sensitivity<br>ynergistic activity | <i>inosa.</i><br><i>ae</i> .<br>g agar cup meth<br>g paper disc me<br>g ditch method. | nod<br>ethod              |                 |

| Program: Biotech                                                    | nology            |                                        | Semester: V               |      |  |
|---------------------------------------------------------------------|-------------------|----------------------------------------|---------------------------|------|--|
| Course: Food Bio                                                    | otechnology (VSC) | Course Code:                           |                           |      |  |
| Teac                                                                | ching Scheme      | Ev                                     | aluation Scheme           |      |  |
| Lecture<br>(Hours per week)<br>(Hours per week)<br>(Hours per week) |                   | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |      |  |
| 2                                                                   | -                 | 2                                      | 40 M                      | 60 M |  |

Understand the principles of food biotechnology.

Describe the different types of functional foods and nutraceuticals.

Develop an understanding of the complex issues surrounding functional foods and nutraceuticals. Understand the importance of food safety and standards.

## **Course Outcomes:**

Analyze the benefits and risks of food biotechnology.

Apply knowledge of functional foods and nutraceuticals to real-world scenarios.

Describe the key food safety regulations and standards.

Critically evaluate impact of food safety regulations and standards on food industry.

| Unit | Topics                                                                 | No of Hours |
|------|------------------------------------------------------------------------|-------------|
| 1    | Introduction to Food Biotechnology                                     | 10          |
| 2    | Functional food and nutraceuticals in management of health and disease | 10          |
| 3    | Food standards & Safety regulations                                    | 10          |
|      | Total                                                                  | 30          |

| Unit            | Торіс                                                                        | Hours/<br>Credits |
|-----------------|------------------------------------------------------------------------------|-------------------|
| Ι               | Fermentative production of enzymes used in food industry; recovery of        | 10                |
| Introduction to | enzymes from natural sources.                                                |                   |
| Food            | Role of enzymes in baking, meat and meat processing; biosensors;             |                   |
| Biotechnology   | enzymatic approach to tailor made fats; use of lipases and reactions in      |                   |
|                 | organic solvents and two phases.                                             |                   |
|                 | Prebiotics and Probiotics.                                                   |                   |
|                 | Food preservation.                                                           |                   |
| II              | Nutraceuticals and functional foods -Definition, characteristic features,    | 10                |
| Functional      | and classification.                                                          |                   |
| food and        | Applications of nutraceuticals in human health and nutrition- health effects |                   |
| nutraceuticals  | of commonly used nutraceuticals and functional foods (case studies),         |                   |
| in management   | Nutraceuticals in management of health and disease. Development of           |                   |
| of health and   | designer foods for specific chronic diseases; Nutraceutical adjuvants        |                   |
| disease         | Nutrigenomics- Concept and examples.                                         |                   |
|                 |                                                                              |                   |
| III             | Salient features of Food Safety & Standards Act, 2006, Structure of          | 10                |
| Food standards  | FSSAI, Administrative set up at the State level.                             |                   |
| & Safety        | Introduction to Food Safety,                                                 |                   |
| regulations     | Food Contaminants (Microbial, Chemical, Physical),                           |                   |
|                 | Food Adulteration (Common adulterants),                                      |                   |
|                 | Food Additives (functional role, safety issues),                             |                   |
|                 | Food Packaging & labelling, Nutritional labelling, labelling requirements    |                   |
|                 | for pre-packaged food as per CODEX Biosecurity in Food and Agriculture.      |                   |

1. Murray Robert, Harper`s Biochemistry, 24th Ed, Prentice Hall International UK Ltd,

1990.

- Krause's Food, Nutrition and Diet Therapy, 10th Edition by Mahan, L.K. & Scott Stump, S. (2000), W.B. Saunders Ltd.
- 3. Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals, Jean -

Richard Neeser & J. Bruce German, Marcel Dekker, Inc., 2004.

4. Regulations and Quality: Pharmaceutical Manufacturing Handbook, Shayne Cox

God (Ed.), Wiley Interscience 2008

| Program: Biotechnology                  |                                                |                                                                    |                                                 | Semester: V                            |                           |  |
|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|---------------------------|--|
| Course: Marine Biotechnology (Elective) |                                                |                                                                    |                                                 | Course Code:                           |                           |  |
| Teaching Scheme                         |                                                |                                                                    |                                                 | Evaluation Scheme                      |                           |  |
| Leo<br>(Hours )                         | cture<br>per week)                             | Practical<br>(Hours per<br>week)                                   | Credit                                          | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |  |
|                                         | 2L                                             |                                                                    | 2                                               | 40                                     | 60                        |  |
| Learnir                                 | ng Objectiv                                    | es:                                                                |                                                 |                                        |                           |  |
| Understa<br>Describe<br>Evaluate        | nd the key pr<br>different typ<br>the environm | rinciples of marine<br>bes of marine biotec<br>nental impact of ma | biotechnology ap<br>chnology ap<br>arine biotec | ogy.<br>oplications.<br>hnology.       |                           |  |
| Course                                  | Outcomes:                                      |                                                                    |                                                 |                                        |                           |  |
| Apply kr                                | nowledge of i                                  | marine biotechnolo                                                 | gy to real v                                    | vorld scenarios.                       |                           |  |
| Analyze<br>Explain t                    | potential imp<br>the role of ma                | arine biotechnology                                                | v in address                                    | on environment                         | llenges.                  |  |
| Outline                                 | of Syllabus                                    | 5:                                                                 |                                                 |                                        |                           |  |
| Unit                                    | Topics                                         |                                                                    |                                                 |                                        | No of Hours               |  |
| 1                                       | Marine Bi                                      | otechnology Intro                                                  | duction &                                       | Bioprospecti                           | ng 10                     |  |
| 2                                       | Marine Drugs and Enzymes                       |                                                                    |                                                 |                                        | 10                        |  |

10 30

3

Marine Bioresources

Total

| Unit                                                                            | Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hours/  |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Credits |
| I<br>Marine<br>Biotech-<br>nology<br>Introduc-<br>tion<br>& Biopros-<br>pecting | Introduction to Marine Biotechnology.<br>The marine ecosystem and its functioning: intertidal, estuarine, salt<br>marsh, mangrove, coral reef, coastal & deep-sea ecosystems.<br>Hydrothermal vents.<br>Bioprospecting, Marine Microbial Habitats and Their<br>Biotechnologically relevant Microorganisms.<br>Methods for Microbial Bioprospecting in Marine Environments.<br>Biotechnological Potential of Marine Microbes.<br>Bioactive compounds from Marine organisms: fungi, microalgae,<br>seaweeds, Actinomycetes, sponges. | 10      |
| II<br>Marine Drugs<br>and Enzymes                                               | Drugs from Marine organisms: Pharmaceutical compounds from<br>marine flora and fauna - marine toxins, antiviral and antimicrobial<br>agents.<br>Approved Marine Drugs as Pharmaceuticals.<br>Marine Natural products and its Challenges.<br>Marine Microbial Enzymes-Marine Extremozymes and Their<br>Significance.<br>Current Use of Marine Microbial Enzymes.                                                                                                                                                                    | 10      |
| III<br>Marine<br>Bioresources                                                   | Marine Bioresources, Marine Secondary Metabolites, Marine<br>Proteins, Marine Lipids.<br>Marine-Derived Ingredients with Biological Properties.<br>Marine Bioactives as Potential Nutraceuticals.<br>Cosmetics from Marine Sources: Scenario of Marine Sources in<br>the Cosmetic Industry.<br>Major Functions of Some Marine Components in Cosmetics and<br>Cosmeceuticals, Treatments Based on Marine Resources, Products<br>Based on Marine Resources.                                                                          | 10      |

- Kim, S.K. Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany; Heidelberg, Germany, 2015.
- Blanca Hernández-Ledesma, Miguel Herrero-Bioactive Compounds from Marine Foods-Plant and Animal Sources-Wiley-Blackwell (2013)
- 3. W. Evans-Trease and Evans Pharmacognosy 15th ed.-Saunders (2010)

| Program: Biotech                                     | nology                                                                                                                                                                |                                                                                                    | Sem                                                                                                     | ester: V                                                                  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Course: Marine l                                     | Biotechnology Prac                                                                                                                                                    | tical (Elec                                                                                        | ctive) Cou                                                                                              | rse Code:                                                                 |  |
| <b>Teaching Scheme</b>                               |                                                                                                                                                                       |                                                                                                    | <b>Evaluation Scheme</b>                                                                                |                                                                           |  |
| Lecture<br>(Hours per week)                          | Practical<br>(Hours per<br>week)                                                                                                                                      | Credit                                                                                             | Continuous<br>Assessment<br>(Internal)                                                                  | Semester End Examinations                                                 |  |
| -                                                    | 4                                                                                                                                                                     | 2                                                                                                  | -                                                                                                       | 100                                                                       |  |
| 1. S<br>2. S<br>3. D<br>4. E<br>5. E<br>6. E<br>7. E | Study of any 5 marin<br>Study of any 5 marin<br>OPPH assay for anti<br>Extraction of caroter<br>Extraction and estim<br>Extraction and estim<br>Extraction of alkaloi | ne bacteria<br>ne algae (1<br>oxidant ex<br>noids from<br>nation of C<br>nation of C<br>ads from n | a.<br>Macro and micr<br>xtracted from m<br>n marine algae/I<br>Gelatin.<br>Collagen.<br>narine organism | ro).<br>harine algae<br>Bacteria/Fungi<br>hs and their separation by TLC. |  |

| Program: Biotechnology       |                                  |        | Semester: V                            |                           |
|------------------------------|----------------------------------|--------|----------------------------------------|---------------------------|
| Course: Biosafety (Elective) |                                  |        | Course Code:                           |                           |
| Teaching Scheme              |                                  |        | Evaluation Scheme                      |                           |
| Lecture<br>(Hours per week)  | Practical<br>(Hours per<br>week) | Credit | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |
| 2                            | -                                | 2      | 40                                     | 60                        |

Explain the principles of biosafety.

Explain the importance of GLP in biotechnology.

Use biosafety principles to design and implement safe biotechnology practices.

Risk assessment including identification of potential hazards and development of mitigation strategies.

# **Course Outcomes:**

Understand the risks associated with biological agents and measures to mitigate those risks. Understand GLP including the principles of quality assurance, quality control and documentation. Evaluate the effectiveness of biosafety measures in biotechnology. Develop a biosafety manual for a biotechnology laboratory.

| Unit | Topics                     | No of Hours |
|------|----------------------------|-------------|
| 1    | Introduction to Biosafety. | 10          |
| 2    | GLP                        | 10          |
| 3    | Biosafety - Applications   | 10          |
|      | Total                      | 30          |

| Unit                              | Торіс                                                                                                                                                                                                                                                                                                                             | Hours/Credits |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| I<br>Introduction<br>to biosafety | Introduction - Biological Risk Assessment; Hazardous<br>Characteristics of an Agent; Genetically modified<br>agent hazards; Cell cultures; Hazardous Characteristics<br>of Laboratory Procedures; Potential Hazards<br>Associated with Work Practices; Safety Equipment and<br>Facility Safeguards; Pathogen risk and management. | 10            |
| II<br>GLP                         | Concept of GLP; Practicing GLP; Guidelines to GLP;<br>Documentation of Laboratory work; Preparation of<br>SOPs; Calibration records; Validation of methods;<br>Documentation of results; Audits & Audit reports.                                                                                                                  | 10            |
| III<br>Biosafety-<br>Applications | Microbial Contamination in food and pharma product;<br>Some common microbial contaminants;<br>Microbiological Assays for pharmaceutical products;<br>Regulatory Microbiological testing in pharmaceuticals.<br>Biosafety in Biotechnology.                                                                                        | 10            |

- Pharmaceutical Microbiology Hugo, W.B, Russell, A.D 6<sup>th</sup> edition Oxford Black Scientific Publishers.
- Biosafety in Microbiological and Biomedical Laboratories 5th Edition, L. Casey Chosewood Deborah E. Wilson U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institutes of Health.
- Molecular Biotechnology –Principles and Applications of Recombinant DNA Glick, B.R, Pasternak, J.J Patten, C.L 3<sup>rd</sup> edition ASM press

| Program: Biotechnology                 |                                  |        | Semester: V                            |                           |  |
|----------------------------------------|----------------------------------|--------|----------------------------------------|---------------------------|--|
| Course: Biosafety Practical (Elective) |                                  |        | Course Code:                           |                           |  |
| Teaching Scheme                        |                                  |        | Evaluation Scheme                      |                           |  |
| Lecture<br>(Hours per week)            | Practical<br>(Hours per<br>week) | Credit | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |  |
| -                                      | 4                                | 2      | -                                      | 100                       |  |

- 1. Validation of micropipette, measuring cylinders, colorimeters.
- 2. Calibration of pH meter and weighing balance.
- 3. Vitamin B12 bioassay.
- 4. Testing for adulterants in food.
- 5. Drafting SOP for any two major laboratory instruments.
- 6. Sterility of injectables.

| Program: Biotechnology<br>Course: Biochemistry (MAJOR)<br>Teaching Scheme |   | Semester: VI<br>Course Code: |                                  |        |
|---------------------------------------------------------------------------|---|------------------------------|----------------------------------|--------|
|                                                                           |   |                              |                                  |        |
|                                                                           |   | Lecture<br>(Hours per week)  | Practical<br>(Hours per<br>week) | Credit |
| 2                                                                         | - | 2                            | 40                               | 60     |

Explain the structure and function of proteins and describe different types of protein interactions Evaluate the role of carbohydrate metabolism.

Explain the principles of endocrinology.

Analyze the role of hormones in regulating physiological processes.

#### **Course Outcomes:**

Develop a critical thinking approach to protein biochemistry.

Analyze protein structure and functions.

Analyze carbohydrate metabolism in bacteria, plants and animals.

Describe major endocrine systems and their functions.

| Outline of Syllabus: |                      |             |  |
|----------------------|----------------------|-------------|--|
| Unit                 | Topics               | No of Hours |  |
| 1                    | Protein Biochemistry | 10          |  |
| 2                    | Metabolism           | 10          |  |
| 3                    | Endocrinology        | 10          |  |
|                      | Total                | 30          |  |

| Unit Topic                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Credits |
| I<br>Protein<br>Biochemistry | Protein structure: Protein Tertiary and<br>Quaternary Structures<br>Protein Denaturation and Folding<br>Protein Function: Reversible Binding of a Protein to a Ligand:<br>Oxygen-Binding Proteins<br>Complementary Interactions between<br>Proteins and Ligands: Immunoglobulins<br>Protein Interactions Modulated by Chemical Energy: Actin, Myosin,<br>and Molecular Motors<br>Protein purification                                                                                                                                                                                                | 10      |
| II<br>Metabolism             | Carbohydrate biosynthesis and its regulation:<br>Peptidoglycan in Bacteria<br>Starch and sucrose in Plants<br>Glycogen in Animals<br>Biosynthesis and regulation of Cholesterol,<br>Atherosclerosis                                                                                                                                                                                                                                                                                                                                                                                                  | 10      |
| III<br>Endocrinology         | Mechanism of action of group I and II<br>Hormones Structure, storage, release,<br>transport, biochemical functions<br>and disorders associated with hormones secreted by Hypothalamus -<br>Anterior Pituitary gland - GH, stimulating hormones)<br>Posterior Pituitary gland – oxcytocin and vasopressin<br>Thyroid gland – Thyroxine, calcitonin<br>Parathyroid gland – PTH<br>Adrenal medulla – epinephrine and<br>norepinehprine<br>Adrenal cortex – Glucocortocoids<br>Pancreas – insulin and glucagon<br>Female Gonads – estrogen and progesterone<br>Male gonads – testosterone Placenta – hCG | 10      |

- 1. The Cell-A Molecular Approach- Geoffrey Cooper, Robert Hausman Fourth edition (2007). ASM press Sinauer Associates Inc USA.
- Molecular Biology of the Cell- Bruce Alberts et al Sixth Edition (2008). Garland Science USA.
   Lehninger, principles of biochemistry, 4<sup>th</sup> edition (2005), David Nelson and

Michael Cox W.H. Freeman and Company, New York.

4. Biochemistry, 4<sup>th</sup> edition (2010), Voet and Voet, John Wiley and sons, USA

| Program: Biotechnology                 |                                  |        | Semester: VI                           |                           |
|----------------------------------------|----------------------------------|--------|----------------------------------------|---------------------------|
| Course: Biochemistry Practical (Major) |                                  |        | Cou                                    | rse Code:                 |
| Teaching Scheme                        |                                  |        | Evaluation Scheme                      |                           |
| Lecture<br>(Hours per week)            | Practical<br>(Hours per<br>week) | Credit | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |
| -                                      | 4                                | 2      | -                                      | 100                       |

1. Study of protein denaturation using viscometer.

2. Protein purification by ammonium sulphate precipitation and dialysis.

3. Estimation of purified protein by Bradford's method.

4. Estimation of blood glucose levels for detection of diabetes mellitus.

5. Estimation of serum cholesterol (Total and HDL: LDL ratio)

6. Estimation of starch by Willstater's method.

7. Study of working of a Glucometer.

| Program: Biotechnology<br>Course: Industrial Microbiology (MAJOR)<br>Teaching Scheme |                                  |        | Sem                                    | ester: VI                 |
|--------------------------------------------------------------------------------------|----------------------------------|--------|----------------------------------------|---------------------------|
|                                                                                      |                                  |        | Cou                                    | rse Code:                 |
|                                                                                      |                                  |        | Evaluation Scheme                      |                           |
| Lecture<br>(Hours per week)                                                          | Practical<br>(Hours per<br>week) | Credit | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |
| 2                                                                                    | -                                | 2      | 40                                     | 60                        |

Understand the different types of fermentation processes.

Know the different types of downstream processing techniques.

Describe the different types of quality control tests, including microbiological, chemical, and physical tests.

# **Course Outcomes:**

Design and optimize fermentation processes. Design and optimize downstream processing protocols. Design and implement quality control protocols

| Unit | Topics                       | No of Hours |
|------|------------------------------|-------------|
| 1    | Fermentation Process.        | 10          |
| 2    | Downstream Processing (DSP). | 10          |
| 3    | QA-QC.                       | 10          |
|      | Total                        | 30          |

| Unit                                      | Торіс                                                                                                                                                                                                                                                                                                                                                                                                               |         |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     | Credits |  |  |
| I:<br>Fermentation<br>Process             | DairytechnologyPreservation methodsPasteurization; Starter Cultures;Fermentedproducts-Production process and spoilage ofCheese: Swiss and Cheddar; Butter; Yogurt and Buttermilk.IntroductiontoInoculum development; Bacterial andfungal inoculum development with one example each, scale up,scale down.Production of:Streptomycin; Protease; Mushroom; Glutamic acid;Semi-synthetic Penicillin.Biotransformation. | 10      |  |  |
| II:<br>Down-stream<br>Processing<br>(DSP) | Introduction of DSP; Foam separation; Types of Precipitation;<br>Filtration; Centrifugation. Chromatography in DSP; Cell<br>disruption- physical and chemical methods; Solvent recovery,<br>membrane processes; Drying; Crystallization and Whole broth<br>Processing.                                                                                                                                              | 10      |  |  |
| III<br>QA-QC                              | Concept of GMP; Requirements of GMP implementation;<br>Documentation of GMP practices; Regulatory certification of<br>GMP; Quality Control (QC): Concept of QC; Requirements for<br>implementing QC; QA concepts: Concept of QA; Requirements for<br>implementing.                                                                                                                                                  | 10      |  |  |

- Applied Dairy Microbiology Elmer H Marth and James L Steele Mercel Dekker Inc New York, 2nd edition
- 2. Microbial Technology Peppler, H.J and Perlman, D 2nd Academic Press Practicals
- 3. Industrial Microbiology Prescott and Dunn CBS publishers
- 4. Dairy technology by Yadav and Grower
- 5. Fermentation technology by Stanbury and Whittkar
- 6. Pharmaceutical Microbiology by Russel and Hugo

| Program: Biotechnology                       |                                  |              | Sem                                    | nester: VI                |
|----------------------------------------------|----------------------------------|--------------|----------------------------------------|---------------------------|
| Course: Industrial Microbiology Practical (N |                                  |              | Iajor) Cou                             | irse Code:                |
| Teaching Scheme                              |                                  |              | Ev                                     | valuation Scheme          |
| Lecture<br>(Hours per week)                  | Practical<br>(Hours per<br>week) | Credit       | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |
| -                                            | 4                                | 2            | -                                      | 100                       |
| 1. E                                         | Estimation of Milk               | orotein-Py   | nes method.                            |                           |
| 2. Is                                        | solation of Normal               | flora from   | n Milk and curd                        | l.                        |
| 3. Is                                        | solation of antibioti            | c produci    | ng bacteria by:                        |                           |
| (a                                           | a)Wilkins overlay r              | nethod.      |                                        |                           |
| (1                                           | b) Crowded plate te              | chnique.     |                                        |                           |
| 4. N                                         | Aicrobiological assa             | ay of peni   | cillin.                                |                           |
| 5. N                                         | Aicrobiological ass              | ay of vitar  | min B12.                               |                           |
| 6. F                                         | fermentative produc              | ction of al  | cohol.                                 |                           |
| 7. E                                         | Estimation of alcoho             | ol in the sa | ample.                                 |                           |
| 8. V                                         | visit to any food / fe           | ermentatio   | on industry.                           |                           |
|                                              |                                  |              |                                        |                           |
|                                              |                                  |              |                                        |                           |
|                                              |                                  |              |                                        |                           |
|                                              |                                  |              |                                        |                           |
|                                              |                                  |              |                                        |                           |

| Program: Biotech                            | nology                           | Sen    | Semester: VI                           |                           |  |
|---------------------------------------------|----------------------------------|--------|----------------------------------------|---------------------------|--|
| Course: Environmental Biotechnology (MAJOR) |                                  |        |                                        | Course Code:              |  |
| Teaching Scheme                             |                                  |        | Evaluation Scheme                      |                           |  |
| Lecture<br>(Hours per week)                 | Practical<br>(Hours per<br>week) | Credit | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |  |
| 2                                           | -                                | 2      | 40                                     | 60                        |  |

Describe the different types of renewable energy sources.

Explain the principles of industrial effluent treatment: physical, chemical and biological processes. Explain the principles of hazardous waste management, including waste minimization, recycling and disposal.

# **Course Outcomes:**

Evaluate the environmental impacts of renewable energy sources.

Understand the guidelines for industrial effluent treatment.

Analyze the risks associated with hazardous waste, including human health risks and environmental risks.

Develop a critical thinking approach to waste treatment and management.

| Unit | Topics                         | No of Hours |
|------|--------------------------------|-------------|
| 1    | Renewable sources of energy.   | 10          |
| 2    | Industrial Effluent Treatment. | 10          |
| 3    | Hazardous Waste Management.    | 10          |
|      | Total                          | 30          |

| Unit                                      | Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hours/<br>Credits |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| I:<br>Renewable<br>sources of<br>energy   | Energy sources renewable – solar energy, wind power,<br>geothermal energy and hydropower, biomass energy;<br>Biogas technology- biogas plant & types, biodigester. Biogas-<br>composition, production and factors affecting production,<br>uses;<br>Biofuels – ethanol production. Microbial<br>hydrogen production<br>Biodiesel, Petrocrops.                                                                                                                                                                                                                                                                 | 10                |
| II<br>Industrial<br>effluent<br>treatment | Biological processes for industrial effluent treatment, aerobic<br>biological treatment- activated sludge process, CASP, advanced<br>activated sludge processes (any two) Biological filters, RBC,<br>FBR;<br>Anaerobic biological treatment- contact digesters, packed bed<br>reactors, anaerobic baffled digesters, UASB;<br>Solid waste treatment;<br>pollution indicators & biosensors; biodegradation of<br>xenobiotics- persistent compounds, chemical properties<br>influencing biodegradability, microorganisms in biodegradation;<br>Use of immobilized enzymes or microbial cells<br>for treatment. | 10                |
| III<br>Hazardous<br>waste<br>Management   | Heavy metal pollution-techniques used for heavy metal removal;<br>biosorption by bacteria, fungi and algae.<br>Biodegradation of waste from tanning industry; petroleum industry;<br>paper & pulp industry; Dairy; Distillery; Dye industry; Antibiotic<br>industry; Removal of oil spillage & grease deposits.                                                                                                                                                                                                                                                                                               | 10                |

- 1. Environmental Biotechnology Allan Scragg Oxford University press
- 2. Environmental Biotechnology (Basic concepts and applications) Indu Shekar Thakur IK International

| Program: Biotechnology                          |                                  |        |                                      | Semester: VI              |  |
|-------------------------------------------------|----------------------------------|--------|--------------------------------------|---------------------------|--|
| Course: Pharmacology and Neurochemistry (Minor) |                                  |        |                                      | ourse Code:               |  |
| Teaching Scheme                                 |                                  |        | Evaluation Scheme                    |                           |  |
| Lecture<br>(Hours per week)                     | Practical<br>(Hours per<br>week) | Credit | Continuou<br>Assessmen<br>(Internal) | Semester End Examinations |  |
| 2                                               | -                                | 2      | 40                                   | 60                        |  |

Understand the general principles of pharmacology.

Know the principles of drug absorption and distribution.

Understand the chemical composition and structure of the brain.

Understand the role of neurochemistry in neurological and psychiatric disorders.

## **Course Outcomes:**

Evaluate the factors that influence drug absorption and distribution

Analyze the dose-response relationship of drugs.

Design and optimize drug delivery systems.

Analyze the chemical signaling pathways in the brain.

Analyze the chemical signaling pathways in the brain.

| Unit | Topics                              | No of Hours |
|------|-------------------------------------|-------------|
| 1    | General principles of Pharmacology. | 10          |
| 2    | Drug Absorption and Distribution.   | 10          |
| 3    | Neurochemistry                      | 10          |
|      | Total                               | 30          |

| Unit                  | Торіс                                                                                                                                                                                                                                    | Hours/  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                       |                                                                                                                                                                                                                                          | Credits |
| Ι                     | Mechanism of drug action; drug receptors and biological                                                                                                                                                                                  | 10      |
| General               | receptor binding; dose–response relationship: therapeutic                                                                                                                                                                                |         |
| principles of         | index; ED, LD; Potency and Intrinsic Activity                                                                                                                                                                                            |         |
| Pharmacology          | ; Drug antagonism.                                                                                                                                                                                                                       |         |
| II                    |                                                                                                                                                                                                                                          | 10      |
| Drug Absorption       | Absorption of drugs from the alimentary tract                                                                                                                                                                                            |         |
| and Distribution      | ; factors affecting rate of gastrointestinal absorption;<br>absorption of drugs from lungs; skin; absorption of drugs<br>after parenteral administration; factors influencing drug<br>distribution; binding of drugs to plasma proteins; |         |
|                       | Physiological barriers to drug distribution.                                                                                                                                                                                             |         |
| III<br>Neurochemistry | Anatomy and functioning of the brain;<br>Neuronal pathways –Propogation of nerve impulses ; Neuronal<br>excitation and inhibition; Synapses and gap junctions;<br>Action of Neuro toxins and neurotransmitters.                          | 10      |

- 1. Textbook of Medical Physiology Guyton, A.C and Hall 11<sup>th</sup> edition J.E Saunders
- 2. Modern Pharmacology with clinical Applications Craig, C.R, Stitzel, R.E 5<sup>th</sup> edition
- 3. Clinical Pharmacology Bennet, PN, Brown, M.J, Sharma, P 11<sup>th</sup> edition Elsevier
- 4. Biochemistry Metzler, D.E Elsevier

| Program: Biotechnology                                    |                                  |        |                                | Semester: VI      |                           |
|-----------------------------------------------------------|----------------------------------|--------|--------------------------------|-------------------|---------------------------|
| Course: Pharmacology and Neurochemistry Practical (Minor) |                                  |        |                                | Cou               | rse Code:                 |
| Teaching Scheme                                           |                                  |        | Ev                             | aluation Scheme   |                           |
| Lecture<br>(Hours per week)                               | Practical<br>(Hours per<br>week) | Credit | Continu<br>Assessm<br>(Interna | ous<br>ent<br>al) | Semester End Examinations |
| -                                                         | 4                                | 2      | -                              |                   | 100                       |

1. Evaluation of LD50 using suitable models.

2. To study the combined effect of two drugs on bacteria.

3. Determination of Minimum Inhibitory Concentration (MIC) of antibiotic.

4. Determination of Minimum Lethal Concentration (MLC) of antibiotic.

5. Study of different regions of brain using models.

6. Stroop test and Blind spot test.

7. Colour blindness and Optical illusions.

| Program: Biotechnology                          |                                  |        |                                  |                  | Semester: VI              |  |
|-------------------------------------------------|----------------------------------|--------|----------------------------------|------------------|---------------------------|--|
| Course: Pharmaceutical Biotechnology (ELECTIVE) |                                  |        |                                  | Course Code:     |                           |  |
| Teaching Scheme                                 |                                  |        | Evaluation Scheme                |                  |                           |  |
| Lecture<br>(Hours per week)                     | Practical<br>(Hours per<br>week) | Credit | Continuo<br>Assessme<br>(Interna | ous<br>ent<br>l) | Semester End Examinations |  |
| 2                                               | -                                | 2      | 40                               |                  | 60                        |  |

To introduce the basic concepts of pharmaceutical biotechnology.

Explain the strategies and various steps of the new drug discovery process.

To provide the basic information about various terms, concepts, production processes and analytical techniques in pharmaceutical biotechnology.

#### Course Outcomes:

Gain basic knowledge about the applications of biotechnology in the field of pharmaceuticals. Will understand the concept of drug discovery and drug designing.

Will get knowledge of various medicinally important secondary metabolites.

Understand the role of recombinant DNA technology for the improvement of productivity and efficacy.

| Unit | Topics                                            | No of Hours |
|------|---------------------------------------------------|-------------|
| 1    | Introduction to pharmaceutical biotechnology      | 10          |
| 2    | Secondary metabolites of plant and microorganisms | 10          |
| 3    | Advances in pharmaceutical biotechnology          | 10          |
|      | Total                                             | 30          |

| Unit             | Торіс                                                                     |         |  |  |
|------------------|---------------------------------------------------------------------------|---------|--|--|
|                  |                                                                           | Credits |  |  |
| Ι                | Introduction to pharmaceutical biotechnology/ Biopharmaceuticals.         | 10      |  |  |
| Introduction to  | Introduction to drug design and discovery                                 |         |  |  |
| nharmacoutical   | Stages in the drug discovery process.                                     |         |  |  |
| pharmaceuticar   | Computer-Aided Drug Design (CADD)                                         |         |  |  |
| biotechnology    | Concept of Prodrug                                                        |         |  |  |
|                  | Bioassay guided fractionation methods- TLC, GC, and HPLC,                 |         |  |  |
|                  | Kole of NMR and Mass spectrometry in drug discovery.                      |         |  |  |
|                  |                                                                           | 10      |  |  |
| 11               | Introduction to secondary metabolites– Phenolics, Alkaloids, Saponins,    | 10      |  |  |
| Secondary        | Secondary metabolites of microorganisms – Antibiotics Antitumor agents    |         |  |  |
| metabolites of   | Pharmacological and nutraceutical agents. Enzymes and enzyme inhibitors   |         |  |  |
| plant and        | and agricultural and animal health products                               |         |  |  |
| microorganisms   | Pharmacological Assays –                                                  |         |  |  |
| lineroorganishis | In-vitro assays - chemical (anti-oxidant),                                |         |  |  |
|                  | Biological (anti- cancerous and assay system based on enzymes and cells), |         |  |  |
|                  | and                                                                       |         |  |  |
|                  | immunological (RIA and ELISA) –                                           |         |  |  |
|                  | In vivo assays (Anti-inflammatory and Anti-analgesic).                    |         |  |  |
|                  |                                                                           |         |  |  |
|                  |                                                                           |         |  |  |
| III              | Recombinant DNA technology (RDT)                                          | 10      |  |  |
| Advances in      | Techniques of gene manipulation, cloning strategies, cloning and          |         |  |  |
| pharmaceutical   | expression vectors, recombinant selection and screening, expression in    |         |  |  |
| biotechnology    | <i>E. coli</i> and yeast.                                                 |         |  |  |
|                  | Applications of the RDT in the production of recombinant proteins:        |         |  |  |
|                  | Regulatory proteins interferon, interleukins etc.                         |         |  |  |
|                  | Blood products – Erythropoietin.                                          |         |  |  |
|                  | Hormones: Insulin.                                                        |         |  |  |
|                  | 1                                                                         |         |  |  |

- 1. Liljefors, T., Krogsgaard-Larsen, P., & Madsen, U. (Eds.). (2002). Textbook of drug design and discovery. CRC Press.
- 2. Crommelin Daan J. A., Sindelar D. Robert (3rd edition) Pharmaceutical Biotechnology: Fundamentals and Applications, CRC Press, 2007.
- 3. Walsh, G. Biopharmaceuticals: Biochemistry and Biotechnology (2nd Edition), Wiley-Blackwell, 2013.
- 4. Satoskar R.S., Nirmala N. Rege, and Bhandarkar S. D. Pharmacology and Pharmacotherapeutics (Revised 23rd Edition), Popular Prakashan, Mumbai.

| Program: Biotechnology                                       |                                  |        |                                        | Semester: VI              |  |
|--------------------------------------------------------------|----------------------------------|--------|----------------------------------------|---------------------------|--|
| Course: Pharmaceutical Biotechnology Practical<br>(Elective) |                                  |        |                                        | urse Code:                |  |
| Teaching Scheme                                              |                                  |        | Evaluation Scheme                      |                           |  |
| Lecture<br>(Hours per week)                                  | Practical<br>(Hours per<br>week) | Credit | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |  |
| -                                                            | 4                                | 2      | -                                      | 100                       |  |

- 1. Sterility checking of pharmaceutical products injectable /ophthalmic solution.
- 2. Validation of autoclave using biological indicator.
- 3. Microbial limit test (MLT) of pharmaceutical product.
- 4. Microbiological assay of penicillin.
- 5. Microbiological assay of vitamin B12.
- 6. Qualitative study of secondary metabolites (TLC).
- 7. HPLC method validation.
- 8. Visit to pharmaceutical industry.

| Program: Biotech                              | nology                           | Sen    | Semester: VI                           |                           |  |
|-----------------------------------------------|----------------------------------|--------|----------------------------------------|---------------------------|--|
| Course: Agricultural Biotechnology (ELECTIVE) |                                  |        |                                        | Course Code:              |  |
| Teaching Scheme                               |                                  |        | Ev                                     | valuation Scheme          |  |
| Lecture<br>(Hours per week)                   | Practical<br>(Hours per<br>week) | Credit | Continuous<br>Assessment<br>(Internal) | Semester End Examinations |  |
| 2                                             | -                                | 2      | 40                                     | 60                        |  |

Understand the principles of precision agriculture. Know the different types of molecular markers. Understand the benefits and challenges of biofertilizers and biopesticides.

## **Course Outcomes:**

Analyze the use of precision agriculture systems in different contexts. Analyze the use of molecular markers in plant breeding programs. Evaluate the effectiveness of biofertilizers and biopesticides.

| Unit | Topics                                         | No of Hours |
|------|------------------------------------------------|-------------|
| 1    | Precision Agriculture and Agriculture Systems. | 10          |
| 2    | Molecular Markers in Plant Breeding.           | 10          |
| 3    | Biofertilizers and Biopesticides.              | 10          |
|      | Total                                          | 30          |

| Unit                                                            | Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |  |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Credits |  |  |  |  |
| I:<br>Precision<br>Agriculture<br>and<br>Agriculture<br>Systems | Introduction to Agriculture and Agriculture systems; Green house<br>Technology Types of green house, importance, functions and<br>features of green house, Design criteria and calculation;<br>Construction material, covering material and its characteristics,<br>growing media, greenhouse irrigation system, nutrient<br>management; Greenhouse heating, cooling and shedding and<br>ventilation system, Computer controlled environment; Phytotrons,<br>fertigation and roof system;<br>Precision Cultivation- tools, sensors for information acquisition.                                                                                                                               | 10      |  |  |  |  |
| II:<br>Molecular<br>Markers in<br>Plant<br>Breeding             | Genetic markers in plant breeding Classical markers, DNA<br>markers (RFLP, RAPD, AFLP, SSR, SNP);<br>Application of Molecular Markers to Plant Breeding quantitative<br>trait locus (QTL) mapping; Plant DNA Barcoding- Barcoding<br>Markers (matK, rbcl, ITS, tmH-psbA), steps, recent advances,<br>Benefits, Limitations.                                                                                                                                                                                                                                                                                                                                                                   | 10      |  |  |  |  |
| III:<br>Biofertilizers<br>and<br>Biopesticides                  | Biofertilizer: Nitrogen-fixing Rhizobacteria - Symbiotic Nitrogen<br>Fixers; Nonsymbiotic Nitrogen Fixers; Plant Growth Promoting<br>Microorganisms-Phosphate- Solubilizing Microbes(PSM),<br>Phytohormones and Cytokinins, Induced Systemic Resistance;<br>Plant Growth Promotion by Fungi—Mycorrhizae, Arbuscular<br>Mycorrhizae, Ectomycorrhizae; Microbial Inoculants-Inocula,<br>Carriers, and Applications, Monoculture and Co-culture Inoculant<br>Formulations Biocontrol, Polymicrobial Inoculant Formulations;<br>Biopesticides– types, Bacillus thuringiensis, insect viruses<br>and entomopathogenic fungi (characteristics, physiology,<br>mechanism of action and application). | 10      |  |  |  |  |

- 1. M. Ajmal Ali, G. Gyulai, F. Al-Hemaid -Plant DNA Barcoding and Phylogenetics, LAP Lambert Academic Publishing (2015)
- P. Parvatha Reddy (auth.)-Sustainable Crop Protection under Protected Cultivation- Springer Singapore (2016)
- 3. S.B. Anderson (ed.), Plant Breeding from Laboratories to Fields, InTech, 2013
- 4. Henry Leung, Subhas Chandra Mukhopadhyay (eds.) Intelligent Environmental Sensing (2015, Springer International Publishing)
- Travis R. Glare, Maria E. Moran-Diez Microbial-Based Biopesticides\_ Methods and Protocols (2016, Humana Press)

| Program: Biotech                                 | nology                           | Semester: VI |                                  |                  |                           |  |  |  |  |
|--------------------------------------------------|----------------------------------|--------------|----------------------------------|------------------|---------------------------|--|--|--|--|
| Course: Agricult                                 | ural Biotechnology               | (Elective)   | ve) Course Code:                 |                  |                           |  |  |  |  |
| Teaching Scheme                                  |                                  |              | <b>Evaluation Scheme</b>         |                  |                           |  |  |  |  |
| Lecture<br>(Hours per week)                      | Practical<br>(Hours per<br>week) | Credit       | Continuo<br>Assessmo<br>(Interna | ous<br>ent<br>l) | Semester End Examinations |  |  |  |  |
| _                                                | Δ                                | 2            |                                  |                  | 100                       |  |  |  |  |
|                                                  | i                                | _            |                                  |                  | 100                       |  |  |  |  |
| 1. RAPD analysis demonstration experiment.       |                                  |              |                                  |                  |                           |  |  |  |  |
| 2. Isolation of <i>Rhizobium</i> .               |                                  |              |                                  |                  |                           |  |  |  |  |
| 3. Isolation of <i>Azotobacter</i> .             |                                  |              |                                  |                  |                           |  |  |  |  |
| 4. Isolation of Phosphate solubilising bacteria. |                                  |              |                                  |                  |                           |  |  |  |  |
| 5. S                                             | tudy of Mycorrhiza               | ne.          |                                  |                  |                           |  |  |  |  |

- 6. Estimation of antioxidants and antioxidant enzymes Ascorbic acid, Catalase, and Peroxidase.
- 7. Visit to green house facility.